Correlation and Prediction of Thermodynamic Properties of Some Complex Aqueous Electrolytes by the Modified Three-Characteristic-Parameter Correlation Model

Xinlei Ge,[†] Mei Zhang,[†] Min Guo,[†] and Xidong Wang^{*,‡}

Department of Physical Chemistry, University of Science and Technology Beijing, 100083, China, and College of Engineering, Peking University, Beijing 100871, China

In this paper, the thermodynamic properties, such as the mean activity coefficient, osmotic coefficient, and water activity, for 129 complex aqueous electrolyte solutions have been calculated by the modified three-characteristic-parameter correlation model. We also calculated the adjustable parameters of the Pitzer model and the Bromley model. Results of the standard deviations showed that our modified model is fairly suitable for predicting the mean activity coefficient, osmotic coefficient, and water activity of these electrolytes. This new model is much better than the Bromley model for all studied electrolyte solutions in this paper, and it is almost on par with the Pitzer model. Especially for 3–1 and 3–2 electrolytes, our model shows a better result than the Pitzer model.

Introduction

As is well-known, accurate prediction of the thermodynamic properties in aqueous solutions plays an important role in many fields, such as extraction, oil recovery, biological studies, etc. Also, a number of models have been developed to describe these electrolyte properties, such as Pitzer equations,¹ the Bromley model,^{2,3} the NRTL model^{4,5} and MSA-based models,^{6,7} etc. The Pitzer model, which introduced the short-range interactions between ions, is admitted as the most widely used semiempirical model, especially after Kim and Frederick^{8,9} published the Pitzer parameters for 304 single salts in aqueous solutions at 298.15 K. But it should be noted that many complex electrolytes including ones with organic anions or cations, which are very significant in some related fields, were not summarized in their paper. Also, much new research on some other electrolytes has been carried out after their publications. So, it is necessary to obtain the Pitzer parameters of these electrolytes. On the other hand, another noticeable model is the three-characteristic-parameter correlation (TCPC) approach proposed by Lin and Lee,¹⁰ whose parameters possess clear physical significance, and it is also showing up as a powerful tool for calculating the thermodynamic properties of electrolytes in aqueous solution.

This model has been modified, and parameters for many strong aqueous electrolyte solutions have been obtained across a wide concentration range in our previous work.¹¹ We also have extended this model for nonaqueous electrolyte solutions including mixed solvent systems.¹² We proved that the modified TCPC model is on par with the Pitzer model and much better than the Bromley model in estimating the mean activity coefficient or osmotic coefficients. The model for calculating the thermodynamic properties of multicomponent systems is also under research in our group now. Since these kinds of models developed the concept of solvation for the short-range interaction term, it is also hopeful to

predict thermodynamic properties of weak electrolyte aqueous solutions. Therefore, as a part of this series of work, the present study aims to extend this modified model for predictions of the thermodynamic properties of some complex electrolyte aqueous solutions and, additionally, to determine the sets of parameters for the Pitzer and Bromley models.

Thermodynamic Models

Pitzer Model. Pitzer et al.¹ presented the short-range interactions by binary interaction parameters. The equations for calculating the mean activity coefficient and osmotic coefficient of an electrolyte solution were written as

$$\ln \gamma_{\pm} = -A_{\varphi} |Z_{+}Z_{-}| f^{\gamma} + m \frac{2v_{+}v_{-}}{v} B^{\gamma} + m^{2} \frac{2(v_{+}v_{-})^{32}}{v} \cdot \frac{3}{2} C^{\varphi}$$
(1)

$$f^{\gamma} = -A_{\varphi} \left[\frac{I^{1/2}}{1 + bI^{1/2}} + \frac{2}{b} \ln(1 + bI^{1/2}) \right]$$
(2)

$$B^{\gamma} = 2\beta^{(0)} + \frac{2\beta^{(1)}}{\alpha^2 I} \Big[1 - \Big(1 + \alpha I^{1/2} - \frac{1}{2} \alpha^2 I \Big) \exp(-\alpha I^{1/2}) \Big]$$
(3)

$$\varphi = 1 - A_{\varphi} |Z_{+} Z_{-}| f^{\varphi} + m \frac{2v_{+}v_{-}}{v} B^{\varphi} + m^{2} \frac{2(v_{+}v_{-})^{3/2}}{v} C^{\varphi}$$
(4)

$$f^{\varphi} = -A_{\varphi} \frac{I^{1/2}}{1 + bI^{1/2}} \tag{5}$$

$$B^{\varphi} = \beta^{(0)} + \beta^{(1)} \exp(-\alpha I^{1/2})$$
 (6)

For 2–2 electrolytes, it is necessary to add another parameter, $\beta^{(2)}$, and eqs 3 and 6 can be expressed as:

$$B^{\gamma} = 2\beta^{(0)} + \frac{2\beta^{(1)}}{\alpha_1 I} \Big[1 - \Big(1 + \alpha_1 I^{1/2} - \frac{1}{2} \alpha_1 I \Big) \exp(-\alpha_1 I^{1/2}) \Big] + \frac{2\beta^{(2)}}{\alpha_2 I} \Big[1 - \Big(1 + \alpha_2 I^{1/2} - \frac{1}{2} \alpha_2 I \Big) \exp(-\alpha_2 I^{1/2}) \Big]$$
(7)

10.1021/je7006499 CCC: \$40.75 © 2008 American Chemical Society Published on Web 03/18/2008

^{*} Corresponding author. Tel.: +86 10 62334926. Fax: +86-10-62327283. E-mail: xidong@coe.pku.edu.cn.

[†] University of Science and Technology Beijing.

^{*} Peking University.

$$B^{\varphi} = \beta^{(0)} + \beta^{(1)} \exp(-\alpha_1 I^{1/2}) + \beta^{(2)} \exp(-\alpha_2 I^{1/2}) \quad (8)$$

Here, $\beta^{(0)}$, $\beta^{(1)}$, $\beta^{(2)}$, and $C^{(\varphi)}$ are the Pitzer parameters. A_{φ} is the Pitzer–Debye–Huckel (PDH) constant with a value of 0.391 kg^{1/2} mol^{-1/2} at 298.15 K. Z_i is the charge number of ion *i*, and $I = \Sigma m_i Z_i^2$ is the ionic strength of the electrolyte. *m* is the molality of solution (mol·kg⁻¹). *b* was regarded as a constant with a value of 1.2. v_i is the stoichiometric number of ion *i*, and α was a constant with a value of 2.0 kg^{1/2} mol^{-1/2} in eqs 3 and 6. For 2–2 electrolytes, $\alpha_1 = 1.4 \text{ kg}^{1/2} \text{ mol}^{1/2}$ and $\alpha_2 = 12 \text{ kg}^{1/2} \text{ mol}^{1/2}$, respectively.

The activity of water can be determined from the following equation

$$\ln a_{\rm w} = -(vmM_{\rm w}/1000) \cdot \varphi \tag{9}$$

where $v = v_+ + v_-$ and M_w is the molecular weight of water $(g \cdot mol^{-1})$.

Bromley Model. The equation proposed by $Bromley^2$ for calculating the mean activity coefficient of an aqueous electrolyte solution is

$$\log \gamma_{\pm} = -\frac{A_{\rm m} |Z_{+} Z_{-} | I^{1/2}}{1 + I^{1/2}} + I \cdot \left[\frac{(0.06 + 0.6B) |Z_{+} Z_{-}|}{(1 + 1.5I/|Z_{+} Z_{-}|)^{2}} + B \right]$$
(10)

Here, $A_{\rm m}$ has a constant value of 0.5108 at 298.15 K. *B* is an adjustable parameter.

Modified TCPC Model. The three-characteristic-parameter correlation model proposed by Lin and Lee¹⁰ was modified with the following equations for calculating the mean activity coefficient, osmotic efficient, and solvent activity for single electrolyte solutions

$$\ln \gamma_{\pm} = -|z_{+}z_{-}|A_{\varphi} \left[\frac{I^{1/2}}{1+bI^{1/2}} + \frac{2}{b} \ln(1+bI^{1/2}) \right] + \frac{S}{T} \cdot \frac{I^{2n}}{v_{+}+v_{-}} (11)$$

$$\varphi = 1 - |z_{+}z_{-}|A_{\varphi}\frac{I^{1/2}}{1 + bI^{1/2}} + \frac{S}{T(v_{+} + v_{-})}\frac{2n}{2n+1}I^{2n}$$
(12)

$$\ln a_{\rm s} = -(vmM_{\rm s}/1000) \cdot \varphi \tag{13}$$

$$A_{\varphi} = \frac{1}{3} (2\pi L d_{\rm s})^{1/2} \left(\frac{e^2}{DkT}\right)^{3/2} \tag{14}$$

Here *D* is the static dielectric constant of the solvent at temperature *T* and *L* is Avogadro's number; d_s is the density of solvent; *k* is the Boltzmann constant; and *e* is the electronic charge. M_s is the molecular weight of solvent (g•mol⁻¹). Other symbols are the same as the ones described above.

In eqs 11 to 13, the first term is the PDH long-range interaction term. b is an adjustable parameter in this model, which is dependent on the closest-distance of approach between ions. The second term is the expression of solvation effect. It was calculated on the basis of electrical potential law. S is defined as the "solvation parameter" that represents the solvation effect between ions and the solvent molecules. n was a parameter related to the distance between the ion and the solvent molecule.

The modifications are concentrated on the following aspects: (i) Treatment of the D value. In the original model, D was regarded as an adjustable parameter and can be regressed from the literature data. Actually, in most of the semiempirical models, such as Pitzer, Bromley, NRTL, etc., the solute is always treated as a medium with an invariable dielectric constant; here it was also employed as a solute-specific constant. (ii) Treatment of the *S* value. In the original model, *S* was treated as a value containing temperature; here it is independent of temperature, which hopefully will reduce the temperature dependence of the parameters. (iii) Treatment of the *n* value. In the original model, *n* was regarded as a constant, 0.645, in all cases to simplify the process of optimization. Since the concentration range is low (< 6 mol·kg⁻¹), it is acceptable for strong electrolytes, but we prove that it is necessary to take a change of *n* value into account for prediction in the high concentration range. Thus in our study, the two sets of parameters (*b*, *S*) and (*b*, *S*, *n*) were both obtained to compare with each other.

It also should be noted that the original TCPC model was developed on the consideration that electrolytes are completely dissociated into ions. This assumption was also employed in our model. For the complex electrolyte solutions, in a sort of way, one can also assume that the complex electrolyte molecule is dissociated completely in the low concentration range. But in the higher concentration range, n becomes a very important factor. With the consideration of n, it is also helpful to overcome the deviation from complete dissociation. In our opinion, the solvation effects included in our model are the most important for the calculation of complex electrolyte solutions. The results listed below show its feasibility.

Results and Discussion

The modified TCPC model was applied to correlate the experimental activity coefficient data or osmotic coefficient data for many complex electrolytes at 298.15 K, so that the adjustable parameters can be obtained by multiple regression analysis. The objective function is given below, and the optimization was performed by the least-squares method with MATLAB software

 $\delta = \left[\sum_{i} \left(\ln \gamma_{\pm}^{\text{exptl}} - \ln \gamma_{\pm}^{\text{calcd}} \right)^2 / n_{\text{p}} \right]^{1/2}$

or

$$\delta = \left[\sum_{i} \left(\varphi^{\text{exptl}} - \varphi^{\text{calcd}}\right)^2 / n_{\text{p}}\right]^{1/2}$$
(15)

Here δ is defined as the standard deviation; n_p is the number of experimental data points; and the subscripts of expt1 and calcd refer to the experimental and calculated data, respectively. Two sets of parameters for our model, (b, S) and (b, S, n), are both listed in Table 1. Since parameters of the Pitzer or Bromley models for these electrolytes have not been reported in the literature, they were also regressed and tabulated in Table 1 to compare with our model. Most of the parameters in our model and the Pitzer and Bromley models were obtained from experimental mean activity coefficients, while some parameters were regressed from reported experimental osmotic coefficients. The standard deviations of different electrolytes by various models are listed in Table 2.

It should be noted that some negative *S* values were obtained, which may seem unreasonable. Actually, the *S* value can be regarded as representing the interactions between ions and solvent molecules. The negative *S* value represents the association effect of ions, equal to a negative solvation effect. In these cases, it indicates that the association of ions or incomplete dissociation is very significant for calculating the thermodynamic properties of these electrolytes.

As shown in Table 2, the results of standard deviations of our model show good consistency between the experimental

Table 1.	Calculated	Parameters for	· Aqueous	Electrolyte	Solutions a	at 298.	15 K"

	this work						Pitzer		
electrolytes	b	S(n = 0.645)	b	S	п	$\beta^{(0)}$	$\beta^{(1)}$	C^{φ}	B
				1–1 Electrolytes					
CH ₂) ₄ NCl	2.0229	22,1336	1.4426	63.6810	0.4822	0.0579	0.0966	-0.0006	0.031
CH ₂) ₄ NBr	1.1651	0.9487	2.6487	-130.2132	0.18015	-0.0460	0.1310	0.0110	-0.02
TH _a), NF	5.9756	156,9875	2.6261	264 6599	0.5258	0.2686	0.2364	-0.0008	0.212
$(H_3)_4$ (I	1.5943	-488 6981	1.4413	-499.8599	0.6846	0.0691	-0.1131	-1.3466	3,900
$(H_3)_4(N)$	1 3611	65 4382	1 6403	40.0334	0.75025	0.0545	0.0885	0.0081	0.059
$^{2115}_{4}$ NBr	0.6506	30.6456	0.7056	0.5254	0.75025	-0.0162	-0.1350	0.0065	-0.00
$2^{11}5)4^{11}DI$	0.0390	270.2640	5 6571	220 1712	0.87025	0.0102	0.1339	0.0005	0.0
$(2\pi_5)_4$ NF	9.9661	270.2049	3.0371	550.1712	0.3923	0.3728	0.3491	0.0119	0.542
$_{2}H_{5})_{4}NI$	0.2455	-124.4180	22.5381	-655.2654	0.25045	-0.3942	0.0619	0.1255	-0.2
$_{3}H_{7})_{4}NBr$	0.6831	29.7238	0.6831	29.7238	0.6450	0.0034	-0.2308	0.0045	-0.0
$_{3}H_{7})_{4}NI$	0.2317	-612.3611	15.9119	-891.4826	0.3210	-0.7365	0.0958	0.3664	-0.4
$_4H_9)_4NCI$	3.1404	6.2739	3.1404	6.2739	0.6450	0.0372	0.4111	-0.0012	0.013
$_{4}H_{9})_{4}NBr$	0.5597	-57.3470	21.6468	-511.9992	0.2144	-0.1786	-0.0080	0.0400	-0.1
$_{4}H_{9})_{4}NF$	17.6933	478.8478	6.2702	579.9987	0.5328	0.6172	0.3525	-0.0229	0.48
OCH ₂ CH ₃) ₄ NBr	0.7713	-4.6713	17.9510	-417.9364	0.16555	-0.0834	0.0634	0.0130	-0.0
OCH ₂ CH ₃) ₄ NF	2.7782	35.9180	2.4341	55.0240	0.5474	0.0850	0.2279	-0.0025	0.049
$C_3H_7)_4NF$	23.0240	358.6524	1.8609	652.4230	0.49025	0.5705	0.1580	-0.0080	0.44
C_4H_0 , NF	17.6933	478.8534	5.9212	587.0003	0.52735	0.6174	0.3523	-0.0231	0.482
CO.	2.3931	88.4825	3.3044	41,9805	0.8484	0.0843	0.2807	0.0144	0.09
ReO.	2,4285	77,9596	2,7839	60.0700	0.7037	0.1001	0.2457	0.0062	0.09
Cl	1 8118	21 7247	2 1286	7 0243	0.9065	0.0029	1 5674	0.0049	-0.0
NBr	1 76/13	-183 0533	16 1/0/	-493 571	0.24585	-0 3/08	0.6186	0 1336	_0.0
	1.7043	-170 2016	17 6740	-188 0.09	0.24303	-0.3354	0.0100	0.1330	0 1
	1.0010	-10.5010	17.0749	-400.020	0.2297	-0.3334	0.0111	0.1303	0.1
-DU ₅ INDI	1.8420	-185.048/	17.0788	-488.088	0.2431	-0.3390	0.0130	0.1298	-0.1
₂ El ₂ NBr	2.0484	-144.2704	17.0106	-438.124	0.2129	-0.2734	0.5937	0.1157	-0.1
Et ₃ NBr	1.8339	-155.3455	17.9419	-477.486	0.2149	-0.3116	0.5897	0.1354	-0.1
Glu	2.3297	48.7016	2.7206	23.4367	0.8828	0.0602	0.2291	0.0080	0.04
Hu	2.5942	61.1903	2.9897	36.9890	0.84235	0.0808	0.2333	0.0094	0.06
MANO ₃	1.7319	-10.5173	20.1984	-297.1911	0.18095	-0.0176	0.2732	0.0011	-0.0
IANO ₃	1.8517	-10.2575	20.6697	-286.2350	0.1687	-0.0122	0.2372	0.0020	-0.0
IANO ₃	1.3599	-3.4019	3.8503	-169.9468	0.1850	-0.0261	0.1813	0.0037	-0.0
GuCl	1.9320	24.2383	2.2067	5.8856	1.00915	0.0238	0.2359	0.0049	0.02
GuBr	1 1041	3 0200	1 1174	0.0025	2 4501	-0.0397	0 1411	0.0067	-0.0
F	1 4553	-1.0423	5 1018	-1913613	0.16325	-0.0210	0.2315	0.0033	-0.0
CE SO	5 7364	35 5042	3 9284	86 0234	0.4316	0.1453	0.2272	-0.0147	0.07
CI ₃ 50 ₃	2.8106	0.0211	2.5204	10 0407	0.4310	0.1455	0.3222	-0.0022	0.01
	2.8100	9.9311	2.0423	19.0497	0.3031	0.0317	0.2870	-0.0033	0.01
45	4.4505	55.2994	2.8038	119.0670	0.4617	0.1455	0.2855	-0.0088	0.08
MS	3.1935	26.7125	3.0186	35.0645	0.5760	0.0357	1.7892	0.0001	0.04
45	2.6558	6.5067	2.6844	4.9693	0.71105	0.0435	0.2752	-0.0031	0.01
FMS	4.7368	114.5451	4.5230	120.9732	0.6290	0.1829	0.3230	0.0020	0.15
FFMS	7.3404	111.6682	3.2756	219.0136	0.4660	0.2400	0.3127	-0.0139	0.16
TFMS	4.6665	32.6061	2.5677	120.0700	0.3596	0.1295	0.2992	-0.0125	0.06
FMS	2.2712	-14.5605	3.2365	-64.0134	0.3858	-0.0039	0.3587	-0.0012	-0.0
I₄MS	2.6519	16.1232	2.7891	7.3057	0.9073	0.0537	0.2398	-0.0023	0.02
NMS	3.5060	70.9425	3.3657	77.6315	0.6176	0.1302	0.2648	-0.0018	0.09
NMS	2.8750	95.052	3 1508	79.8424	0.6449	0.1285	0.2415	0.0017	0.09
NMS	6 2708	35 0049	0 5943	399 7581	0.2256	0.2081	0.2413	-0.0388	0.08
41 (11) S	4 5200	74 5035	3 8350	100.0506	0.5562	0.2001	0.2415	-0.0087	0.00
20 70	5.0799	74.5055	2 1 4 2 0	152 0476	0.3302	0.1018	0.2920	0.0087	0.10
-0 -0	J.U/00	11.2004	2 5502	132.0470	0.4372	0.1049	0.2073	-0.0141	0.11
ES C	4.5414	52.4027	3.3382	90.1791	0.4889	0.1443	0.2989	-0.0123	0.08
5	3.0368	54.2548	5.2266	24.0252	0.7580	0.0807	0.2607	-0.0022	0.04
i ₄ ES	3.3883	30.7203	3.1128	44.6735	0.5357	0.1002	0.2567	-0.0093	0.05
4NES	3.8093	76.0092	3.1747	105.8209	0.5472	0.1524	0.2556	-0.0063	0.10
NES	3.4547	96.1366	3.3733	100.1263	0.6322	0.1522	0.2498	0.0015	0.11
4NES	6.8761	19.7097	0.1016	549.9993	0.2070	0.2052	0.2513	-0.0439	0.07
sul ^A	-0.1118	16.1479	4.4843	-509.7898	0.19325	-0.2957	-0.2673	0.1040	-0.2
sul ^A	2.4633	-22.3152	21.3443	-329.541	0.16045	-0.077	1.2144	0.0114	Ι
sul ^A	1.7742	-42.0600	23.2023	-335.8895	0.2342	-0.0706	0.2868	0.0082	-0.0
sul ^A	57.4892	16.6942	26,7226	47 1528	0.39495	0.1327	0.7937	-0.0140	0.09
.Gu sul ^A	2 9078	31 9709	2 7667	39 3684	0 59435	0.0790	0.2608	-0.0025	0.04
olinic acid	10 2044	-13 1251	10 2044	-13 1251	0.6/50	0.0061	0.0110	0.0025	0.04
enlf ^B	7 5001	_1 1042	10.2744 25 1100	-226 1270	0.12275	0.1110	0.2110	_0.0010	0.02
Sull 16B	2.3884	-4.4902	23.4188	-220.13/8	0.133/3	0.1118	0.1380	-0.0708	0.01
sull -	2.5115	-13.9/43	20.2414	-236.5900	0.10915	0.0079	0.2698	0.0017	-0.0
Ben	3.3013	28.7469	3.6374	14.9846	0.83245	0.0711	0.3232	-0.0011	0.04
Ben	4.9455	39.2196	3.2301	99.9829	0.40975	0.1369	0.3174	-0.0138	0.07
Ben ^C	3.5864	5.9151	3.2559	20.0916	0.31095	0.0993	0.2554	-0.0250	0.04
2,5-Dim ^D	2.4589	-19.2066	23.0632	-255.1499	0.1802	0.0049	0.2655	-0.0013	-0.0
2,5-Dim ^D	2.5980	-96.6617	22.9434	-307.3554	0.22805	-0.0696	0.3027	0.0393	-0.0
nes ^E	0.6196	-18.3527	20.1835	-465.4890	0.2018	-0.2013	0.2654	0.0372	-0.0
mes ^E	1 3474	-17 2769	24 3557	-350 3533	0.18825	-0.0953	0 2778	0.0220	-0.0
mes ^E	3 2676	-210 3428	3 8730	-225 0126	0.57815	-0.0266	0.28/3	-0.0114	_0.0
n eth ^F	2.5070	-40 2222	22 7405	225.0150	0.27013	-0.0200	0.2043	0.0114	
p-cui	2.3381	-40.3322	25.7405	-2/0.2212	0.24243	-0.0082	0.4285	0.0134	-0.0
p-eth.	2.9260	-135.6830	6.0301	-239.9839	0.44385	-0.0965	0.3770	-0.0102	-0.0
p-tol ^G	1.6716	1.0101	1.6266	0.0028	3.09355	-0.0367	0.2667	0.0127	-0.0

Table 1. Continued

	this work						Bromley		
electrolytes	b	S(n = 0.645)	b	S	n	$\beta^{(0)}$	$\beta^{(1)}$	C^{φ}	B
H p-bth ^H	1.0300	-17.1221	21.9102	-387.2545	0.19525	-0.1442	0.3080	0.0305	-0.0619
lysine	4.6859	88.4677	5.1679	76.2484	0.68475	0.1371	0.4129	0.0046	0.1256
arginine	32.2524	-103.3543	32.2524	-103.3543	0.6450	0.0312	0.8353	-0.0220	0.1018
lysHCl	1.0965	36.0540	1.2838	8.1549	1.20235	-0.0270	0.0782	0.0251	-0.0165
ArgHCl	0.6628	-9.0812	20.4787	-448.5980	0.1745	-0.1185	0.0480	0.0226	-0.0784
HisHCl	1.4624	-175.5622	20.1424	-429.4027	0.24495	-0.2622	0.2455	0.2124	-0.1371
CCl ₃ COOK ^b	5.4857	0.2672	4.1588	31.3469	0.2005	0.0855	0.4056	-0.0101	0.0294
CF ₃ COOK ^b	7.3057	-2.8114	7.4563	-3.2108	0.6291	0.0119	1.0704	-0.0003	J
CCl ₃ COONa ^b	9.3153	20.4672	0.3942	502.5763	0.2110	0.1323	0.4469	-0.0109	6.2900
CF ₃ COONa ^b	14.5962	16.0939	0.5378	502.9960	0.2021	0.1192	0.5600	-0.0073	0.0539
Et ₄ NI	0.2219	-179.3147	20.6578	-693.9790	0.2540	-0.4886	0.0617	0.2001	-0.2989
BuEt ₃ NI	25.8021	-819.6828	8.9096	-712.9900	0.7387	-0.1964	0.5198	-0.3875	-0.4595
HepEt ₃ NI	-0.2956	-108.6469	22.2578	-942.5830	0.2403	-0.6174	-0.1728	0.1523	-0.3655
HexEt ₃ NI	0.5382	-206.0547	20.9943	-680.2790	0.3009	-0.4648	0.2318	0.1163	-0.2775
PenEt ₃ NI	1.0201	-252.8996	20.8656	-615.6010	0.31095	-0.3804	0.2361	0.0955	-0.2521
PrEt ₃ NI	13.8935	-327.4788	28.6146	-379.378	0.5343	-0.0709	0.6091	-0.1205	-0.0909
			1	-2, 2-1 Electroly	vtes				
$(NH_4)_2B_{10}H_{10}$	2.5905	8.2765	2.4378	31.9891	0.40915	0.1450	1.4543	-0.0178	0.0146
$Na_{2}B_{12}H_{12}$	4.1248	162.4389	3.4172	235.0167	0.5514	0.5481	1.4964	-0.0404	0.1555
$(TH)_2SO_4$	1.8578	10.8221	1.8954	5.9398	0.7432	0.0654	1.1748	-0.0016	N
Na ₂ WO ₄	3.6058	20.6613	3.9657	1.6436	1.23675	0.1327	2.5969	-0.0011	0.0476
Na ₂ MoO ₄	3.3747	21.5022	3.7032	2.0825	1.18675	0.1318	2.4412	-0.0012	0.0442
H m-ben ^K	5.1296	104.8623	5.2159	97.6633	0.6662	0.5121	1.5877	-0.0735	0.1284
Li m-ben ^K	5.0608	84.6993	4.6131	119.1647	0.56545	0.4579	1.6824	-0.0532	0.1114
Na m-ben ^K	4.5130	30.5777	4.6205	23.0191	0.7080	0.2964	1.8356	-0.0367	0.0622
H 4,4'-bib ^L	1.1894	66.1800	1.2403	44.5517	0.74685	0.0609	0.0100	0.0380	-0.0213
Li 4,4'-bib ^L	2.7859	4.3687	2.7619	0.0631	2.8275	0.1440	1.1016	0.0086	0.0169
Na 4,4'-bib ^L	26.6244	-69.5442	25.9094	-65.3245	0.7453	1.3033	2.5207	-1.7435	0.2974
H 1,14-dis ^M	0.1546	40.1834	0.1794	8.0168	1.07255	-0.0113	-14.3078	0.0416	-0.4720
$Ba(OH)_2$	1.7934	98.5231	1.9346	5.3390	1.8119	-0.0691	0.4522	0.2595	-0.0117
				3-1 Electrolytes	5				
$Al(ClO_4)_3$	4.2458	207.0617	4.9010	154.0625	0.6945	0.9059	5.6963	0.0207	0.1789
$Al(NO_3)_3$	2.0544	89.3121	1.6008	246.0127	0.4948	0.5048	2.0034	-0.0153	0.0599
$Co(en)_3(ClO_4)_3$	2.6646	-71.9500	7.6476	-900.283	0.1953	0.1364	3.3718	0.0546	-0.0076
$La(BrO_3)_{3}^{b}$	3.0713	17.5084	3.3857	1.4002	0.55405	-0.0270	103.5659	0.0259	_
$Pr(BrO_3)_3^b$	3.1362	20.1936	3.4120	3.2358	0.4948	-0.0177	84.1632	0.0287	_
$Nd(BrO_3)_3^{b}$	3.0645	26.0858	3.4455	1.4604	0.60595	-0.0551	85.8109	0.0485	_
$Sm(BrO_3)_3^{b}$	2.8952	32.6826	3.6185	2.1120	0.57545	-0.0341	92.3074	0.0447	_
$Eu(BrO_3)_3^{b}$	3.1328	33.7878	3.7322	1.5228	0.62235	-0.0615	98.2250	0.0578	_
$Gd(BrO_3)_{3_1}^{b}$	3.0901	44.4311	4.1144	2.1081	0.60725	-0.0601	114.8468	0.0654	-
$Tb(BrO_3)_3^{b}$	3.2003	47.0840	4.1831	6.4849	0.50825	-0.0011	74.0123	0.0550	_
$Dy(BrO_3)_3^b$	3.3317	54.0347	4.2251	10.7476	0.47395	0.0173	85.2176	0.0589	_
$Ho(BrO_3)_3^{b}$	3.2557	70.5594	4.8957	9.3279	0.50805	-0.0084	109.4322	0.0808	_
$\operatorname{Er}(\operatorname{BrO}_3)_3^{b}$	3.3354	85.6414	4.7434	23.9934	0.43625	0.0852	118.2586	0.0716	_
$Tm(BrO_3)_3^{\nu}$	3.3800	96.0138	4.5139	40.7834	0.3970	0.1488	118.1959	0.0649	_
$Yb(BrO_3)_3^b$	3.3282	100.0263	4.6168	38.9086	0.40325	0.1527	140.4127	0.0661	_
$Lu(BrO_3)_3^{\nu}$	2.9308	95.6349	5.6227	12.0194	0.50135	0.0015	177.9995	0.0942	_
$Y(BrO_3)_3^b$	3.4513	72.3989	5.6108	11.0299	0.4928	0.0220	104.0567	0.0736	-
$La(NO_3)_3^b$	4.0343	19.5220	3.2529	76.9948	0.4836	0.2568	8.6198	-0.0081	0.0304
$Pr(NO_3)_3$	3.7508	22.7310	2.9670	105.9629	0.4588	0.2762	8.2994	-0.0094	0.0329
$Eu(NO_3)_3$	3.8015	29.7474	2.6/51	169.8080	0.4294	0.3273	7.6788	-0.0127	0.0403
$Y(NO_3)_3$	5.3316	31.2768	2.3819	389.9655	0.3509	0.3815	8.7981	-0.0149	0.0485
$Lu(NO_3)_3$	5.4046	32.2717	1.8379	648.6730	0.30435	0.4195	8.3830	-0.0178	0.0501
Dr.() Cl	0.4007	50 1005	1 2000	4–1 Electrolytes	8	0.5000	(0 1051	0.0000
$Pt(en)_3Cl_4$	2.4807	-52.1227	4.3009	-849.679	0.19455	0.5889	6.2013	-0.1051	-0.0089
ThCl ₄	5.6880	82.8019	5.7635	75.9360	0.6595	1.1471	19.8116	-0.1240	0.1012
				3-2 Electrolytes	8				
$[Co(en)_3]_2(SO_4)_3$	2.2808	4.9497	2.3000	0.0244	1.45675	0.7091	24.4864	-0.0602	-0.0084
$Lu_2(SO_4)_3$	2.2586	29.3380	2.2505	34.0275	0.6199	1.1666	20.9549	-0.1610	-0.0073
				2–2 Electrolytes					
CaCrO ₄ ^b	2.9686	-11.0709	4.1770	-203.028	0.1982	X			0.0182

^{*a*} A, sulfamate. B, sulfanilate. C, benzensulfonate. D, 2,5-dimethylbenzenesulfonate. E, mesitylenesulfonate. F, *p*-ethylbenzenesulfonate. G, *p*-toluenesulfonate. H, *p*-bthylbenzenesulfonate. I, $-7.3736 \cdot 10^{-4}$. J, 2.9997 $\cdot 10^{-4}$. K, *m*-benzenedisulfonate. L, 4,4'-bibenzyldisulfonate. M, 1,14-disphenyltetradecanedisulfonate. N, 1.8806 $\cdot 10^{-4}$. X. $\beta^{(0)} = 0.1251$, $\beta^{(1)} = 0.7691$, $\beta^{(2)} = -0.1309$, $C^{\varphi} = -0.0125$. ^{*b*} The parameters for these electrolytes by the modified TCPC model have been reported in our previous work.¹¹ But parameters of the Pitzer and Bromley models have not been reported before. For comparison, they are all presented here.

data and the calculated results. The discrepancy of the Bromley model for 1-1 electrolytes (0.0805) is acceptable but unacceptable for other kinds of electrolyte solutions (> 0.15). The

modified model with two parameters (b, S) is acceptable (overall average 0.0394) for most electrolyte solutions; it is a little worse than the Pitzer model (overall average 0.0202). But our model

Table 2.	Standard De	eviation (δ)	for Different	Electrolytes b	v Various	Models
----------	-------------	---------------------	---------------	----------------	-----------	--------

	mmax		this work				
electrolytes	$\overline{\text{mol} \cdot \text{kg}^{-1}}$	data	two	three	Pitzer	Bromley	refs.
·			1–1 Electrolytes	5			
(CH ₃) ₄ NCl	19	$\ln \gamma_+$	0.0623	0.0422	0.0352	0.0758	13
(CH ₃) ₄ NBr	5.5	$\ln \gamma_{\pm}$	0.0457	0.0425	0.0264	0.0576	13
(CH ₃) ₄ NF	7	$\ln \gamma_{\pm}$	0.0536	0.0134	0.0083	0.0706	14
(CH ₃) ₄ NI	0.25	$\ln \gamma_{\pm}$	0.0036	0.0034	0.0004	0.0456	13
$(C_2H_5)_4NCI$	9	$\ln \gamma_{\pm}$	0.0470	0.0395	0.0439	0.0726	13
$(C_2H_5)_4NBr$	12	$\ln \gamma_{\pm}$	0.0777	0.0050	0.0730	0.0993	15
$(C_2H_5)_4NT$	19	$\ln \gamma_{\pm}$	0.0573	0.0222	0.0174	0.0090	13
$(C_{2}H_{2})_{4}NBr$	9	$\ln \gamma_{\pm}$ $\ln \gamma_{\pm}$	0.0676	0.0676	0.0785	0.0721	13
$(C_{3}H_{7})_{4}NI$	0.5	$\ln \gamma_{+}^{\perp}$	0.0116	0.0021	0.0009	0.0299	13
$(C_4H_9)_4NCl$	15	$\ln \gamma_{\pm}$	0.0378	0.0378	0.0529	0.1110	13
$(C_4H_9)_4NBr$	2.5	$\ln \gamma_{\pm}$	0.0361	0.0146	0.0217	0.0359	14
$(C_4H_9)_4NF$	1.6	$\ln \gamma_{\pm}$	0.0223	0.0054	0.0052	0.0399	14
$(HOCH_2CH_3)_4NBr$	6.5 6.5	$\ln \gamma_{\pm}$	0.0624	0.0493	0.0302	0.0606	16
$(n_{1}CH_{2}CH_{3})_{4}NF$	0.5	$\lim \gamma_{\pm}$	0.0119	0.0078	0.0032	0.0700	10
$(n-C_{3}H_{7})_{4}NF$	1.6	$\ln \gamma_{\pm}$ $\ln \gamma_{\pm}$	0.0223	0.0055	0.0052	0.0399	15
HTcO ₄	5.5	$\ln \gamma_{\pm}$ $\ln \gamma_{\pm}$	0.0392	0.0249	0.0254	0.0663	17
HReO ₄	8	$\ln \gamma_{\pm}$	0.0217	0.0178	0.0166	0.0720	17
ChCl	7.124	φ · \pm	0.0165	0.0122	0.0127		18
Bu ₄ NBr	1.0666	φ	0.0170	0.0025	0.0034		19
sec-Bu ₄ NBr	1.0325	φ	0.0160	0.0031	0.0034		19
iso-Bu ₅ NBr	1.0505	φ	0.0158	0.0034	0.0044		19
Bu_2Et_2NBr	0.9752	φ	0.0119	0.0015	0.0025		19
BUEL ₃ INBF NaGhu	1.0052	$\varphi_{1n,\alpha}$	0.0146	0.0026	0.0034	0.0588	19
KGlu	3	$\ln \gamma_{\pm}$	0.0174	0.0067	0.0004	0.0532	20
MMANO ₂	9.5	$\ln \gamma_{\pm}$ ln γ_{\pm}	0.0368	0.0132	0.0081	0.0819	20
DMANO ₃	6	$\ln \gamma_{\pm}$	0.0272	0.015	0.0072	0.0717	21
TMANO ₃	8.5	$\ln \gamma_{\pm}$	0.0436	0.0345	0.0191	0.0693	21
TmGuCl	6.5	$\ln \gamma_{\pm}$	0.0277	0.0187	0.0101	0.0695	22
TmGuBr	8.5	$\ln \gamma_{\pm}$	0.0575	0.0505	0.0254	0.0679	22
GuF	9.3	$\ln \gamma_{\pm}$	0.0454	0.0411	0.0144	0.0713	23
NaCF ₃ SO ₃	5.3735	$\ln \gamma_{\pm}$	0.0273	0.0182	0.0079	0.1159	24
NH ₄ Br LIMS	7.5	$\ln \gamma_{\pm}$	0.0127	0.0122	0.0029	0.0923	25
NaMS	5.5	$\ln \gamma_{\pm}$	0.0247	0.0098	0.0029	0.0802	20
KMS	6.5	$\ln \gamma_{\pm}$ ln γ_{\pm}	0.0117	0.0116	0.0028	0.0831	26
HTFMS	4.5	$\ln \gamma_{\pm}$	0.0051	0.0033	0.0067	0.0723	26
LiTFMS	4.5	$\ln \gamma_{\pm}$	0.0337	0.0041	0.0028	0.0826	26
NaTFMS	5.5	$\ln \gamma_{\pm}$	0.0272	0.0124	0.0048	0.0931	26
KTFMS	11	$\ln \gamma_{\pm}$	0.0221	0.0065	0.0096	0.0981	26
NH ₄ MS	4	$\ln \gamma_{\pm}$	0.0112	0.0097	0.0033	0.0774	27
Me_4NMS	4	$\ln \gamma_{\pm}$	0.0102	0.0100	0.0052	0.0785	27
Bu NMS	4	$\ln \gamma_{\pm}$	0.0134	0.0392	0.0085	0.1017	27
HES	4	$\ln \gamma_{\pm}$ ln γ_{\pm}	0.0137	0.007	0.0040	0.0854	27
LiES	4	$\ln \gamma_{\pm}$	0.0235	0.0098	0.0052	0.0878	27
NaES	4	$\ln \gamma_{\pm}$	0.0141	0.0065	0.0045	0.0893	27
KES	4	$\ln \gamma_{\pm}$	0.0105	0.0096	0.0103	0.0791	27
NH_4ES	4	$\ln \gamma_{\pm}$	0.0122	0.0109	0.0039	0.0828	27
Me_4NES	4	$\ln \gamma_{\pm}$	0.0170	0.0134	0.0073	0.0794	27
El ₄ NES	4	$\ln \gamma_{\pm}$	0.0155	0.0152	0.0121	0.0741	27
$H \text{ sul}^A$	22	$\ln \gamma_{\pm}$	0.0010	0.0278	0.0269	0.0505	27
Na sul ^A	4	ω	0.0187	0.0040	0.0068	0.0505	28
K sul ^A	4.3	$\ln \gamma_+$	0.0394	0.0091	0.0017	0.0702	28
Li sul ^A	6	$\ln \gamma_{\pm}$	0.0098	0.0037	0.0274	0.1722	29
Me ₄ Gu sul ^A	6	$\ln \gamma_{\pm}$	0.0116	0.0113	0.0040	0.0777	29
Picolinic acid	8	$\ln \gamma_{\pm}$	0.0682	0.0682	0.0171	0.1692	30
Na sulf ^{\mathbf{D}}	1.1	$\ln \gamma_{\pm}$	0.0095	0.0092	0.0094	0.0377	28
к sull ⁻ Н Вер ^С	5 5	$\lim_{n \to \infty} \gamma_{\pm}$	0.0108	0.0045	0.0053	0.0022	28 31
Li Ben ^C	4 5	$\frac{111}{10}\frac{\gamma_{\pm}}{\gamma_{\pm}}$	0.0094	0.0032	0.0084	0.0802	31
Na Ben ^C	2.5	$\ln \gamma_{\pm}$	0.0052	0.0042	0.0021	0.0627	31
Li 2,5-Dim ^D	3.5	$\ln \gamma_{\perp}$	0.0160	0.0054	0.0041	0.0665	31
Na 2,5-Dim ^D	1	$\ln \dot{\gamma}_{+}^{\pm}$	0.0128	0.0046	0.0016	0.0442	31
H mes ^E	5.5	$\ln \dot{\gamma}_{\pm}$	0.1256	0.0970	0.0289	0.0828	31
Li mes ^E	4.5	$\ln \gamma_{\pm}$	0.1546	0.1485	0.1424	0.0900	31
Na mes ^E	1	$\ln \gamma_{\pm}$	0.0028	0.0016	0.0014	0.0534	31
L1 p-eth'	4	$\ln \gamma_{\pm}$	0.0552	0.0365	0.0288	0.083	31 21
H n-to ^{1G}	2.5	$\lim_{n \to \infty} \gamma_{\pm}$	0.0279	0.0103	0.0210	0.0777	31 32
11 p-101	J	γ_{\pm}	0.0439	0.0362	0.0039	0.0000	54

Table 2. Continued

_

	mmax		this	work			
electrolytes	$mol \cdot kg^{-1}$	data	two	three	Pitzer	Bromley	refs.
H p-bth ^H	5	ln γ.	0.0918	0.0714	0.0142	0.0717	32
lysine	5.5	$\ln \gamma_{\pm}$	0.0314	0.0303	0.0211	0.0912	33
arginine	1.6	$\ln \gamma_{\perp}$	0.0268	0.0268	0.0100	0.1033	33
lysHCl	3.5	$\ln \gamma_{\pm}^{\perp}$	0.0308	0.0228	0.0177	0.0434	33
ÅrgHCl	5	$\ln \gamma_{\pm}$	0.0610	0.0445	0.0260	0.0561	33
HisHCl	0.7	$\ln \gamma_{\pm}$	0.0160	0.0067	0.0011	0.0343	33
CCl ₃ COOK	8	$\ln \gamma_{\pm}$	0.0341	0.0324	0.0230	0.1217	34
CF ₃ COOK	58	$\ln \gamma_{\pm}$	0.0385	0.0384	0.1072	0.1915	35
CCl ₃ COONa	9	$\ln \gamma_{\pm}$	0.0684	0.0288	0.0377	0.1385	34
CF ₃ COONa	12.5	$\ln \gamma_{\pm}$	0.0930	0.0448	0.0333	0.1645	35
Et_4NI	1.4419	$\ln \gamma_{\pm}$	0.0597	0.0196	0.0158	0.0476	36
BuEt ₃ NI	1.8108	$\ln \gamma_{\pm}$	0.0382	0.0037	0.0272	0.1975	36
HepEt ₃ NI	3	$\ln \gamma_{\pm}$	0.1953	0.0642	0.0552	0.1017	36
DepEt NI	2.344	$\ln \gamma_{\pm}$	0.0907	0.0558	0.0013	0.0704	30 26
DrEt NI	1.0675	$\frac{111}{12} \gamma_{\pm}$	0.0499	0.0097	0.0011	0.0050	30
	1.4019	$m \gamma_{\pm}$	0.0255	0.0180	0.0301	0.1213	50
Average			0.0307	0.0225	0.0175	0.0005	
	2.5		1–2, 2–1 Electrol	lytes	0.0100	0.40.00	
$(NH_4)_2B_{10}H_{10}$	3.5	$\ln \gamma_{\pm}$	0.0101	0.0079	0.0122	0.1369	14
$Na_2B_{12}H_{12}$	1.6	$\ln \gamma_{\pm}$	0.0167	0.0042	0.0087	0.0970	14
$(TH)_2SO_4$	6	$\ln \gamma_{\pm}$	0.0215	0.0208	0.0086	0.1041	37
Na_2WO_4	2.5	$\ln \gamma_{\pm}$	0.0330	0.0271	0.0237	0.11/1	38
Na_2MOO_4	2.5	$\ln \gamma_{\pm}$	0.0322	0.0270	0.0245	0.1110	38 20
I in-ben ^K	1.0	$\frac{111}{12} \gamma_{\pm}$	0.0223	0.0225	0.0130	0.1975	39
No m ben ^K	2.5	$\lim \gamma_{\pm}$	0.0298	0.0243	0.0224	0.2501	39
H $4 4'_{\rm bib^{\rm L}}$	2	$\frac{11}{10} \frac{\gamma_{\pm}}{\gamma_{\pm}}$	0.0205	0.0257	0.0209	0.2347	30
$I_i 4 4'_{bib}$	$\frac{2}{12}$	$\frac{11}{10} \frac{\gamma_{\pm}}{\gamma_{\pm}}$	0.0198	0.0108	0.0100	0.1200	30
Na 4 4'-hih ^L	0.4	$\ln \gamma_{\pm}$ ln γ_{\pm}	0.0040	0.0039	0.0232	0.1349	39
H 1.14-dis ^M	2	$m_{\gamma\pm}$	0.0233	0.0153	0.0153	0.6727	39
Ba(OH)	0.2296	$\ln \nu$	0.0579	0.05	0.0279	0.1096	40
Average		/ ±	0.0261	0.0218	0.0183	0.1891	
			3_1 Electrolyt	20			
A1(C1O)	3	ln v	0.0676	0.0483	0.0795	0.4199	41
A1(NO)	3 1607	$\ln \gamma_{\pm}$	0.0070	0.0598	0.0454	0.134	42
$C_0(en)_3(ClO_4)_3$	0.5404	$\ln \gamma \pm \ln \gamma$	0.0665	0.0424	0.0076	0.2193	43
$L_a(BrO_a)_a$	1.837	$m_{\gamma\pm}$	0.0125	0.0052	0.0045	0.2195	44
$Pr(BrO_2)_2$	1.805	φ	0.0135	0.0057	0.0047		44
$Nd(BrO_2)_2$	1.762	φ	0.0233	0.0097	0.0079		44
$Sm(BrO_3)_3$	1.883	φ	0.0201	0.0073	0.0066		44
$Eu(BrO_3)_3$	1.88	φ	0.0301	0.0032	0.0028		44
$Gd(BrO_3)_3$	1.882	φ	0.0356	0.0088	0.0082		44
$Tb(BrO_3)_3$	1.624	φ	0.0166	0.0094	0.0094		44
$Dy(BrO_3)_3$	1.791	φ	0.0296	0.0189	0.0190		44
$Ho(BrO_3)_3$	1.858	φ	0.0365	0.0168	0.0169		44
$Er(BrO_3)_3$	2.184	φ	0.0329	0.0097	0.0084		44
$Tm(BrO_3)_3$	2.05	φ	0.0246	0.0101	0.0100		44
$Yb(BrO_3)_3$	2.119	φ	0.0295	0.0146	0.0139		44
$Lu(BrO_3)_3$	2.16	arphi	0.0523	0.0093	0.0093		44
$Y(BrO_3)_3$	1.830	φ	0.0269	0.0117	0.0115	0.2000	44
$Eu(NO_3)_3$	0.3838	$\ln \gamma_{\pm}$	0.0948	0.0283	0.0439	0.2000	45
$I(NO_3)_3$ $I_0(NO_3)$	7.2105	$\frac{111}{12} \gamma_{\pm}$	0.1085	0.0309	0.0719	0.3147	45
$Pr(NO_3)_3$	7 661	$\ln \gamma_{\pm}$	0.0712	0.0287	0.0728	0.2208	40
$I u(NO_3)_3$	7.5961	$\ln \gamma_{\pm}$	0.0005	0.0617	0.0723	0.2200	47
	7.5901	$m_{\gamma\pm}$	0.0572	0.0208	0.0284	0.2683	- 7
			4 1 Electrolet				
$\mathbf{D}(\mathbf{r}_{i}) = \mathbf{C}^{\dagger}$	0.22	1	4-1 Electrolyt	es 0.0462	0.0102	0.255	40
$r_1(en)_3 \cup I_4$	0.33	$\lim_{n \to \infty} \gamma_{\pm}$	0.0003	0.0463	0.0103	0.233	48
	1.0	III γ_{\pm}	0.0295	0.0287	0.0327	0.3709	49
Avelage			0.0440	0.03/3	0.0313	0.313	
			3–2 Electrolyte	es			
$[\operatorname{Co(en)}_3]_2(\operatorname{SO}_4)_3$	1.844	$\ln \gamma_{\pm}$	0.0942	0.0882	0.0798	0.5562	50
$Lu_2(SO_4)_3$	0.8942	$\ln \gamma_{\pm}$	0.008	0.0078	0.0423	0.1999	51
Average			0.0511	0.048	0.0611	0.3781	
			2-2 Electrolyte	es			
CaCrO ₄	1.112	$\ln \gamma_+$	0.0286	0.0226	0.0071	0.1669	52
Overall Average		. –	0.0394	0.0226	0.0202	0.1551	

with three parameters (b, S, n) (overall average 0.0226) is almost as good as the Pitzer model. Especially, it shows a smaller value of standard deviation (0.0208 and 0.0480) than the Pitzer model (0.0284 and 0.0611) in calculations of 3–1 and 3–2 electrolytes. Because the number of parameters in our model is the same as the Pitzer model, however, they have clear physical significance,

Figure 1. Standard deviations of different electrolytes calculated by various models at 298.15 K. \Box and \bigcirc , the results of this work with two and three parameters, respectively; Δ , the calculated results with Pitzer the model.

Figure 2. Comparison of calculated and experimental mean activity coefficient data for different 1–1 electrolytes at 298.15 K. The solid lines are calculated from the present work with three parameters. \Box , experimental data for (CH₃)₄NF;¹⁴ \bigcirc , KMS;²⁶ \diamondsuit , KTFMS.²⁶

so one can find out that this model is on par with the Pitzer model for those electrolytes.

Figure 1 shows the distribution of standard deviations of all studied electrolytes calculated by the new model and Pitzer model, respectively. Most of the values were within 5 %. Some large deviations were calculated from the new model with two parameters (*b*, *S*), while the model with three parameters (*b*, *S*, *n*) showed a much smaller value. It implies that it is rational and beneficial to describe the electrolyte properties by regarding *n* as an adjustable parameter. For some electrolytes with very high ionic strength, such as La(NO₃)₃, Pr(NO₃)₃, and Y(NO₃)₃, etc., in Figure 1, the new model with three parameters is better than that of the Pitzer model. To some extent, this phenomenon indicates that the solvation effect plays an important role in the case of high ionic strength.

Figures 2 to 4 show the examples of calculated and experimental mean activity coefficients of different electrolyte solutions. These figures show that our model with three parameters is very suitable for calculating the mean activity coefficient. The same set of parameters regressed from the mean activity coefficients also can be used to predict the osmotic coefficient and water activity, as shown in Figures 5 to 7. The good agreement between the experimental and calculated data

Figure 3. Comparison of calculated and experimental mean activity coefficient data for different 1–1 electrolytes at 298.15 K. The solid lines are calculated from the present work with three parameters. \Box , experimental data for Li sulfamate;²⁹ \bigcirc , HReO₄,¹⁷ Δ , NH₄Br;²⁵ \diamondsuit , MMANO₃.²¹

Figure 4. Comparison of calculated and experimental mean activity coefficient data for other types of electrolytes at 298.15 K. The solid lines are calculated from the present work with three parameters. \Box , experimental data for ThCl₄;⁴⁹ \bigcirc , Y(NO₃)₃;⁴⁵ Δ , (NH₄)₂B₁₀H₁₀;¹⁴ \diamondsuit , (TH)₂SO₄.³⁷

also clearly indicates that our model is a very useful tool to estimate the osmotic coefficient and water activity of these aqueous electrolyte solutions.

Conclusions

The TCPC model first proposed by Lin and Lee¹⁰ for estimating the thermodynamic properties of strong electrolyte solutions was extended to correlate many complex aqueous electrolyte solutions over a large range of concentrations at 298.15 K. It can be reduced with two parameters (b, S) or three parameters (b, S, n), where n also can be regarded as an adjustable parameter to describe the distance between the ion and solvent molecules. We obtained the parameters of our model, and Pitzer and Bromley models and tabulated the standard deviations for each electrolyte, respectively. Results of standard deviations show that the modified model with two parameters is good but a little worse than the Pitzer model. Our model with three parameters is almost as good as the Pitzer model and even better than it in estimating the properties of 3-1 type electrolyte solutions. The Bromley model is acceptable for 1-1 type electrolyte solutions to some extent but unacceptable for correlating the properties of other types of electrolyte solutions. Some typical examples of comparisons between

Figure 5. Comparison of calculated and experimental osmotic coefficient data for 1–1 electrolytes at 298.15 K. The solid lines are calculated from the present work with three parameters. \Box , experimental data for HReO₄;¹⁷ \odot , (HOCH₂CH₃)₄NF;¹⁶ Δ , MMANO₃.²¹

Figure 6. Comparison of calculated and experimental osmotic coefficient data for other types of electrolytes at 298.15 K. The solid lines are calculated from the present work with three parameters. \Box , experimental data for Li *m*-benzenedisulfonate;³⁹ \bigcirc , ThCl₄;⁴⁹ \triangle , MMANO₃.⁴⁵

Figure 7. Comparison of calculated and experimental water activity for different electrolytes at 298.15 K. The solid lines are calculated from the present work with three parameters. \Box , experimental data for Lu₂(SO₄)₃;⁵¹ \bigcirc , Pr(NO₃)₃; ⁴⁷ \triangle , NaCF₃SO₃.²⁴

experimental data and calculated results with our model make it clear that our model is very good in estimating the mean activity coefficients, osmotic coefficients, and water activity of those complex aqueous electrolyte solutions.

Literature Cited

- Pitzer, K. S.; Mayogra, G. Thermodynamics of Electrolytes. I. Theoretical Basis and General Equations. J. Phys. Chem. 1973, 77, 268–277.
- (2) Bromley, L. A. Approximate individual ion values of β (or B) in extended Debye-Hückel theory for uni-univalent aqueous solutions at 298.15 K. J. Chem. Thermodyn. 1972, 4, 669–673.
- (3) Bromley, L. A. Thermodynamic Properties of Strong Electrolytes in Aqueous Solutions. AIChE J. 1973, 19, 313–320.
- (4) Chen, C. C.; Britt, H. I.; Boston, J. F.; Evans, L. B. Local Composition Model for Excess Gibbs Energy of Electrolyte Systems. *AIChE J.* 1982, 28, 588–596.
- (5) Chen, C. C.; Evans, L. B. A Local Composition Model for Excess Gibbs Energy of Electrolyte Systems. AIChE J. 1986, 32, 444–454.
- (6) Abramo, M. C.; Caccamo, C.; Malescio, G.; Pizzimenti, G.; Rodge, S. A. Equilibrium Properties of Charged Hard Spheres of Different Diameters in the Electrolyte Solution Regime: Monte Carlo and Integral Equation Results. J. Chem. Phys. **1984**, 80, 4396–4403.
- (7) Lu, J. F.; Yu, Y. X.; Li, Y. G. Modification and Application of the Mean Spherical Approximation Method. *Fluid Phase Equilib.* **1996**, 85, 81–100.
- (8) Kim, H. T.; Frederick, W. J., Jr. Evalution of Pitzer Ion Interaction Parameters of Aqueous Electrolytes at 25°C. 1. Single Salt Parameters. *J. Chem. Eng. Data* **1988**, *33*, 177–184.
- (9) Kim, H. T.; Frederick, W. J., Jr. Evalution of Pitzer Ion Interaction parameters of Aqueous Electrolytes at 25°C. 2. Ternary Mixing Parameters. J. Chem. Eng. Data 1988, 33, 278–283.
- (10) Lin, C. L.; Lee, L. S. A Three-Characteristic-Parameter Correlation Model for Strong Electrolyte Solutions. *Fluid Phase Equilib.* 1998, 85, 169–185.
- (11) Ge, X. L.; Wang, X. D.; Zhang, M.; Seetharaman, S. Correlation and Prediction of Activity and Osmotic Coefficients of Aqueous Electrolytes at 298.15 K by the Modified TCPC Model. *J. Chem. Eng. Data* 2007, 52, 538–547.
- (12) Ge, X. L.; Zhang, M.; Guo, M.; Wang, X. D. Correlation and Prediction of Thermodynamic Properties of Non-aqueous Electrolytes by the Modified TCPC Model. J. Chem. Eng. Data 2008, 53, 149–159.
- (13) Lindenbaum, S.; Boyd, G. E. Osmotic and Activity Coefficients for the Symmetrical Tetraalkyl Ammonium Halides in Aqueous Solution at 25 °C. J. Phys. Chem. 1964, 68, 911–917.
- (14) Wen, W. Y.; Chen, C. M. Osmotic and Activity Coefficients of Solutions of (NH₄)₂B₁₀H₁₀, Na₂B₁₂H₁₂ in H₂O, and of Four Tetraalkylammonium Halides in H₂O and in D₂O at 25 °C. *J. Chem. Eng. Data* **1975**, *20*, 384–387.
- (15) Wen, W. Y.; Saito, S.; Chen, C. M. Activity and Osmotic Coefficients of Four Symmetrical Tetraalkylammonium Fluorides in Aqueous Solutions at 25 °C. J. Phys. Chem. 1966, 70, 1244–1248.
- (16) Wen, W. Y.; Saito, S. Activity Coefficients and Molal Volumes of Two Tetraethanolammonium Halides in Aqueous Solutions at 25 °C. *J. Phys. Chem.* **1965**, *69*, 3569–3574.
- (17) Boyd, G. E. Osmotic and Activity Coefficients of Aqueous HTcO₄ and HReO₄ Solutions at 25 °C. *Inorg. Chem.* **1978**, *17*, 1808–1810.
- (18) Macaskill, J. B.; Mohan, M. S.; Bates, R. G. Activity Coefficients and Osmotic Coefficients in Aqueous Solutions of Choline Chloride at 25 °C. Anal. Chem. 1977, 49, 209–212.
- (19) Amado, G. E.; Blanco, L. H. Isopiestic Determination of the Osmotic and Activity Coefficients of Aqueous Solutions of Symmetrical and Unsymmetrical Quaternary Ammonium Bromides with a New Isopiestic Cell at 298.15 K. *Fluid Phase Equilib.* 2005, 233, 230–233.
- (20) Bonner, O. D. Osmotic and Activity Coefficients of Sodium and Potassium Glutamate at 298.15 K. J. Chem. Eng. Data 1981, 26, 147– 148.
- (21) Bonner, O. D. Osmotic and Activity Coefficients of Methyl-Substituted Ammonium Nitrates at 298.15 K. J. Chem. Eng. Data 1981, 26, 148– 149.
- (22) Bonner, O. D. Osmotic and Activity Coefficients of Some Tetramethylguanidinium Salts at 298.15 K. J. Chem. Eng. Data 1979, 24, 211–212.
- (23) Bonner, O. D. Hydrogen Bonding in Guanidinium Fluoride. J. Phys. Chem. 1977, 81, 2247–2249.
- (24) Rard, J. A.; Palmer, D. A.; Albright, J. G. Isopiestic Determination of the Osmotic and Activity Coefficients of Aqueous Sodium Trifluoromethanesulfonate at 298.15 and 323.15 K, and Representation with an Extended Ion-Interaction(Pitzer) Model. J. Chem. Eng. Data 2003, 48, 158–166.
- (25) Covington, A. K.; Irish, D. E. Osmotic and Activity Coefficients of Aqueous Ammonium Bromide Solutions at 25 °C. J. Chem. Eng. Data 1972, 17, 175–176.

- (26) Bonner, O. D. Study of Methanesulfonates and Trifluoromethanesulfonates. Evidence for Hydrogen Bonding to the Trifluoro Group. *J. Am. Chem. Soc.* **1981**, *103*, 3262–3265.
- (27) Gregor, H. P.; Rothenberg, M.; Fine, N. Molal Activity Coefficients of Methane- and Ethanesulfonic Acids and Their Salts. J. Phys. Chem. 1963, 67, 1110–1112.
- (28) Bonner, O. D. Osmotic and Activity Coefficients of Some Sulfamates and Sulfanilates at 298.15 K. J. Chem. Eng. Data 1982, 27, 142–144.
- (29) Bonner, O. D. Osmotic and Activity Coefficients of Lithium and Tetramethylguanidinium Sulfamates at 298.15 K. J. Chem. Eng. Data 1983, 28, 204–205.
- (30) Robinson, R. A.; Tong, H. K. The Osmotic and Activity Coefficients of Picolinic Acid in Aqueous Solutions at 25 °C. J. Phys. Chem. 1957, 61, 1004–1005.
- (31) Bonner, O. D.; Rogers, O. C. The Effect of Structure of the Osmotic and Activity Coefficients of some Sulfoxic Acids and Their Salts. J. Phys. Chem. 1960, 64, 1499–1501.
- (32) Bonner, O. D.; Easterling, G. D.; West, D. L.; Holland, V. F. Osmotic and Activity Coefficients of p-Toluene-sulfonic Acid and p-Ethylbenzenesulfonic Acid and their Relationship to Ion-exchange Equilibria. *J. Am. Chem. Soc.* **1955**, 77, 242–244.
- (33) Bonner, O. D. Osmotic and Activity Coefficients of Some Amino Acids and Their Hydrochloride Salts at 298.15 K. J. Chem. Eng. Data 1982, 27, 422–423.
- (34) Gampe, T.; Libus, Z. Osmotic and Activity Coefficients of CCl₃COONa (aq) and CCl₃COOK (aq) at the Temperature 298.15 K. *J. Chem. Thermodyn.* **1999**, *31*, 93–103.
- (35) Gampe, T.; Libus, Z. Osmotic and Activity Coefficients of CF₃COONa (aq) and CF₃COOK (aq) at the Temperature 298.15 K. J. Chem. Thermodyn. **1995**, 27, 1373–1383.
- (36) Blanco, L. H.; Amado, E.; Avellaneda, J. A. Isopiestic Determination of the Osmotic and Activity Coefficients of Dilute Aqueous Solutions of the Series MeEt₃NI to Hep₃Et NI at 298.15 K. *Fluid Phase Equilib.* 2006, 249, 147–152.
- (37) Macaskill, J. B.; Bates, R. G. Osmotic and Activity Coefficients of TrisSulfate from Isopiestic Vapor Pressure Measurements at 25 °C. *J. Chem. Eng. Data* **1986**, *31*, 416–418.
- (38) Wu, D. Q.; Qu, S. S.; Xu, Z. L. Isopiestic Determination of Activity Coefficients and Osmotic Coefficients of Sodium Molybdate and Sodium Tungsdate in Aqueous Solution. J. Chem. Thermodyn. 1990, 22, 35–39.
- (39) Bonner, O. D.; Rogers, O. C. The Osmotic and Activity Coefficients of some Bolaform Sulfonates. J. Phys. Chem. 1961, 65, 981–986.
- (40) Harned, H. S.; Mason, C. M. The Activity Coefficient of Barium Hydroxide in Aqueous Solution at 25 °C. J. Am. Chem. Soc. 1932, 54, 1439–1442.

- (41) Molero, M.; Arjona, D. G.; Calvente, J. J.; Perez, G. L. Activity Coefficients of Al(ClO₄)₃ in Aqueous Solutions: A Reexamination. *J. Electroanal. Chem.* **1999**, *460*, 100–104.
- (42) Pearce, J. N. The Vapor Pressures and the Activity Coefficients of Aqueous Solutions of Calcium and Aluminum Nitrate at 25 °C (Correction). J. Am. Chem. Soc. 1936, 58, 376–377.
- (43) Brubaker, C. H., Jr.; Haas, T. E. The Activity Coefficients of Aqueous Solutions of Tris-(ethylenediamine)-cobalt(III) Perchlorate. J. Phys. Chem. 1961, 65, 866–867.
- (44) Nishimura, Y. Thermodynamic Data of Rare Earth Bromates and Chlorates in Aqueous Solutions at 25.0 °C. J. Chem. Eng. Data 2001, 46, 299–307.
- (45) Rard, J. A.; Spedding, F. H. Isopiestic Determination of the Activity Coefficients of Some Aqueous Rare-Earth Electrotyte Solutions at 25 °C. 6. Eu(NO₃)₃, Y(NO₃)₃, and YCl₃. J. Chem. Eng. Data **1982**, 27, 454–461.
- (46) Rard, J. A. Osmotic and Activity Coefficients of Aqueous La(NO₃)₃ and Densities and Apparent Molal Volumes of Aqueous Eu(NO₃)₃ at 25 °C. J. Chem. Eng. Data **1987**, *32*, 92–98.
- (47) Rard, J. A. Isopiestic Determination of the Osmotic and Activity Coefficients of Aqueous NiCl₂, Pr(NO₃)₃, and Lu(NO₃)₃ and Solubility of NiCl₂ at 25 °C. J. Chem. Eng. Data **1987**, 32, 334–341.
- (48) Brubaker, C. H., Jr. Activity Coefficients of Electrolytes of High Charge: Potassium Octacyanomolybdate (IV) and Tris- (ethylenediamine)-Platinum (IV) Chloride. J. Am. Chem. Soc. 1956, 78, 5762– 5764.
- (49) Robinson, R. A. The Osmotic and Activity Coefficients of Aqueous Solutions of Thorium Chloride at 25 °C. J. Am. Chem. Soc. 1955, 77, 6200–6200.
- (50) Wynveen, R. A.; Dye, J. L.; Brubaker, C. H., Jr. Activity Coefficient and Conductivity Measurements of High-charge(3–1, 1–3, 3–2) Electrolytes. I. J. Am. Chem. Soc. 1960, 82, 4441–4445.
- (51) Rard, J. A. Isopiestic Determination of the Osmotic Coefficients of Lu₂(SO₄)₃ (aq) and H₂SO₄(aq) at the Temperature 298.15 K, and Review and Revision of the Thermodynamic Properties of Lu₂(SO₄)₃ (aq) and Lu₂(SO₄)₃.8H₂O (cr). J. Chem. Thermodyn. **1996**, 28, 83– 110.
- (52) Wang, T. G.; Li, Z. H. Some Thermodynamic Properties of Calcium Chromate. J. Chem. Eng. Data 2004, 49, 1300–1302.

Received for review November 7, 2007. Accepted February 8, 2008. This work was financially supported by the National Natural Science Foundation of China (No. 50425415 and No. 50234040) and the National Basic Research Program of China (973 Program: 2007CB613608).

JE7006499